REVIEW
Forced oscillations in applied respiratory physiology: Theoretical Principles
Andreas S. Lappas 1  
,   Anna Tzortzi 1, 2,   Panagiotis K. Behrakis 1, 2, 3, 4
 
More details
Hide details
1
Smoking and Lung Cancer Research Centre, Hellenic Cancer Society, Greece
2
Athens Medical Centre, Greece
3
Harvard University, School of Public Health, USA
4
Biomedical Research Foundation, Academy of Athens, Greece
CORRESPONDING AUTHOR
Andreas S. Lappas   

46 Mesogeion Ave., P.C. 11527, Athens, Greece
 
Pneumon 2013;26(4):327–345
 
KEYWORDS
ABSTRACT
This is a literature review of the theoretical principles which frame the two widely used techniques of forced oscillations applied to the respiratory system, forced oscillation technique (FOT) and impulse oscillometry (IOS). The effect of forced oscillations on the respiratory system is investigated as a phenomenon of motion expressed as changes of pressure, volume, flow and acceleration in the classical mathematical approach to a linear system which, under the pressure of a stimulating force, is impelled into forced oscillation. The physiology of respiratory input impedance is presented as a parameter which describes the correlations between pressure, volume, flow, elastance, resistance and inertia of the respiratory system. The principles of basic practice for test completion are described, and the epidemiological factors which form the framework for the evaluation of the measurements, derived from research in healthy adults, are reviewed.
 
REFERENCES (72)
1.
Milic-Emili J, Aubier M. Some recent advances in the study of the control of breathing in patients with Chronic Obstructive Lung Disease. Anesth Analg 1980; 59:865-873.
 
2.
Dosman J, Bode F, Urbanetti J, Antic R, Martin R, Macklem PT. Role of inertia in the measurement of dynamic compliance. J Appl Physiol 1975; 38:64-69.
 
3.
D’Angelo E, Rocca E, Milic-Emili J. A model analysis of the effects of different inspiratory flow patterns on inspiratory work during mechanical ventilation. Eur Respir Mon 1999; 12:279-295.
 
4.
Barnas GM, Mills PJ, Mackenzie CF et al. Dependencies of respiratory system resistance and elastance on amplitude and frequency in the normal range of breathing. Am Rev Respir Dis 1991;143:240-244.
 
5.
Barnas GM, Campbell DN, Mackenzie CF et al. Lung, chest-wall, and total respiratory system resistances and elastances in the normal range of breathing. Am Rev Respir Dis 1992; 145:110-113.
 
6.
Lappas A, Anagnostopoulos N, Behrakis PK. Harmonic vectorial concept of tidal breathing; special reference to inertia. In: Daifoti ZP, Dimopoulos AM, Kittas C, Koutsilieris M, Stefanadis C, Pantos K (editors), National and Kapodistrian University of Athens, Volume in honor of Professor Denis Cokkinos. JB Parisianos, 2012, pp 525-540.
 
7.
DuBois AB, Brody AW, Lewis DH, Burgess BF. Oscillation mechanics of lungs and chest in man. J Appl Physiol 1956; 8:587–594.
 
8.
Rohrer F. Der Stomungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmäßigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Arch Ges Physiol 1915;162:225-229.
 
9.
Rohrer F. Der Zusammenhand der Atemsorgan. Arch Ges Physiol 1916;165:419.
 
10.
Rohrer F, Nakasone K, Wirz K. Physiologie der Atembewegung Handbuch der normalen und Pathologischen Physiologie. II, pp. 70-127, Berlin:Springer, 1925.
 
11.
Halliday D, Resnick R. Forced oscillations and resonance. In: Walker J(editor), Fundamentals of Physics , Volume I, John Wiley and Sons, USA, 2002, pp. 373-375.
 
12.
Goldman M. Clinical Application of Forced Oscillation. Pulm Pharmacol Ther 2001; 14:341–350.
 
13.
Smith HS, Reinhold P, Goldman MD. Forced oscillation technique and impulse oscillometry. Eur Resp Mon 2005; 31:72-105.
 
14.
Michaelson E, Grassman E, Peters W. Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest 1975; 56:1210–1230.
 
15.
Landsér FJ, Nagels J, Demedts M, Billiet L, Van de Woestijne KP. A new method to determine frequency characteristics of the respiratory system. J Appl Physiol 1976; 41: 101-106.
 
16.
Goldman M, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol 2005; 148:179-194.
 
17.
Hellinckx J, Cauberghs M, De Boeck K, Demedts M. Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography. Eur Resp J 2001; 31:72-105.
 
18.
Ramos C, Nazeran H, Goldman M, Diong B. Circuit analysis justifies a reduced Mead’s model of the human respiratory impedance for impulse oscillometry data. IEEE Eng Med Biol Mag 2010:548-552.
 
19.
Halliday D, Resnick R. Waves in elastic media. In: Walker J(editor), Fundamentals of Physics , Volume I, John Wiley and Sons, USA, 2002, pp.463-496.
 
20.
Mead I. Mechanical properties of the lungs. Physiol Revs 1961; 41:281-306.
 
21.
Mead J, Millic-Emili J. Theory and methodology in respiratory mechanics with glossary of symbols. In: Fenn WO, Rahn H (editors), Handbook of physiology, Section 3, Respiration, Volume 1. American Physiological Association, Washington DC, 1964 pp. 363-376.
 
22.
Woo T, Diong B, Mansfield L et al. A comparison of various respiratory system models based on parameter estimates from impulse oscillometry data. IEEE Eng Med Biol Mag 2004:3828-3831.
 
23.
Diong B, Rajagiri A, Goldman M, Nazeran H. The augmented RIC model of the human respiratory system. Med Bio Eng Comput. 2009; 47:395-404.
 
24.
Goldman M, Nazeran H, Ramos C. et al. Electrical circuit models of the human respiratory system reflect small airway impairment measured by impulse oscillation (IOS). IEEE Eng Med Biol Mag 2010:2467-2472.
 
25.
Meraz E, Nazeran H, Goldman M, Nava P, Diong B. Impulse oscillometric features of lung function: towards computer-aided classification of respiratory diseases in children. IEEE Eng Med Biol Mag 2008:2443-2446.
 
26.
Halliday D, Resnick R. Electromagnetic Oscillations, Alternating current. In: Walker J(editor), Fundamentals of Physics, Volume II, John Wiley and Sons, USA, 2002, pp.387-429.
 
27.
Delavault E, Sumon G, Georges R. Characterization and validation of forced input method for respiratory impedance measurement. Resp Physiol 1980; 40:119-136.
 
28.
Frantz ID, Close RH. Alveolar pressure swings during high frequency ventilation in rabbits. Pediatr Res 1985; 19:653-658.
 
29.
Peslin R, Fredberg JJ. Oscillation mechanics of the respiratory system. In: Macklem P, Mead J (editors), Handbook of Physiology, Section 3: The respiratory system. Vol. III: Mechanics of breathing. American Physiological Society, Washington DC, 1986, pp. 145-177.
 
30.
Thorpe CW, Bates JH. Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J Appl Physiol 1997; 82:1616-1625.
 
31.
Horowitz JG, Siegel SD, Primiano FP, Chester EH. Computation of respiratory impedance from forced sinusoidal oscillations during breathing. Comput Biomed Res 1983; 16:499-521.
 
32.
Peslin R, Fredberg JJ. Oscillation mechanics of the respiratory system. In: AP Fishman(editor), Handbook of physiology. Section 3: The respiratory system. American Physiological Society, 1986. Bethesda, Maryland, USA. pp 145-77.
 
33.
Dorkin HL, Lutchen KR, Jackson AC. Human respiratory input impedance from 4 to 200Hz: physiological and modeling considerations. J Appl Physiol 1989; 67:1973-1981.
 
34.
Neild JE, Twort CHC, Chinn S, et al. The repeatability and validity of respiratory resistance measured by the forced oscillation technique. Resp Med 1989; 83:111-118.
 
35.
Lutchen KR, Sullivan A, Arbogast FT, Celli BR, Jackson AC. Use of transfer impedance measurements for clinical assessment of lung mechanics. Am Respir Crit Care Med 1998; 157:435-446.
 
36.
Navajas D, Farre’ R. Oscillation mechanics. Eur Resp Mon 1999; 12:112-140.
 
37.
Johnson BD, Beck KC, Zeballos JR, Weisman IM. Advances in pulmonary laboratory testing. Chest 1999; 116:1377-1387.
 
38.
MacLeod D, Birch M. Respiratory input impedance measurement: forced oscillation methods. IEEE Med Biol Eng Comput 2001; 39:505-516.
 
39.
Oostveen E, MacLeod D, Lorino R et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22:1026–1041.
 
40.
Johnson MK, Birch M, Carter R, Kinsella J, Stevenson RD. Use of reactance to estimate transpulmonary resistance. Eur Respir J 2005; 25:1061–1069.
 
41.
La Prad AS, Lutchen R. Respiratory impedance measurements for assessment of lung mechanics: focus on asthma. Respir Physiol Neurobiol 2008; 163:64-73.
 
42.
Bates JHT, Suki B. Assessment of peripheral lung mechanics. Respir Physiol Neurobiol 2008; 163:54–63.
 
43.
Frey U. Forced oscillation technique in infants and young children. Pediatr Respir Rev 2005; 6:246-254.
 
44.
Nielsen K. Forced oscillation technique. Pediatr Respir Rev 2006; 7S:S8-S10.
 
45.
Stocks J. Introduction and overview of preschool lung function testing. Pediatr Respir Rev 2006; 7S:S2-S4.
 
46.
Arets HGM, Cornelis K, van der Ent. Measurements of airway mechanics in spontaneously breathing young children. Pediatr Respir Rev 2004; 5:77-84.
 
47.
Beydon N. Pulmonary function testing in young children. Pediatr Respir Rev 2009; 10:208-213.
 
48.
Blonshine S, Goldman MD. Optimizing performance of respiratory airflow measurements. Chest 2008; 134:1304-1309.
 
49.
Cauberghs M, Van de Woestijne KP. Effect of upper airway shunt and series properties on respiratory impedance measurements. J Appl Physiol 1989; 66:2274-2279.
 
50.
Peslin R, Duvivier C, Gallina C, Cervantes P. Upper airway artefact in respiratory impedance measurements. Am Rev Respir Dis 1985; 132:712–714.
 
51.
Marchal F, Haouzi P, Peslin R, Duvivier C, Gallina C. Mechanical Properties of the Upper Airway Wall in Children and Their Influence on Respiratory Impedance Measurements. Pediatr Pulmonol 1992;13:28-33.
 
52.
Desager KN, Cauberghs M, Naudts J, Van de Woestijne KP. Influence of upper airway shunt on total respiratory impedance in infants. J Appl Physiol 1997; 87:902-909.
 
53.
Peslin R, Duvivier C, Jardin P. Upper airway walls impedance measured with head plethysmograph. J Appl Physiol 1984; 57:596–600.
 
54.
Làndsér FJ, Clément J, Van de Woestijne KP. Normal values of total respiratory resistance and reactance determined by forced oscillations: influence of smoking. Chest 1982; 81:586-591.
 
55.
Pasker HG, Mertens I, Clément J, Van de Woestijne KP. Normal values of total respiratory input resistance and reactance for adult men and women. Eur Respir Rev 1994; 4:134–137.
 
56.
Clément J, Làndsér FJ, van de Woestijne KP. Total resistance and reactance in patients with respiratory complaints with and without airways obstruction. Chest 1983; 83:215–220.
 
57.
Gimeno F, van der Weele LT, Koëter GH, van Altena R. Forced oscillation technique. Reference values for total respiratory resistance obtained with the Siemens Siregnost FD5. Ann Allergy 1992; 68:155–158.
 
58.
Pasker HG, Schepers R, Clément J, Van de Woestijne KP. Total respiratory impedance measured by means of the forced oscillation technique in subjects with and without respiratory complaints. Eur Respir J 1996; 9:131–139.
 
59.
Govaerts E, Cauberghs M, Demedts M, Van de Woestijne KP. Head generator versus conventional technique in respiratory input impedance measurements. Eur Respir Rev 1994; 4: 143–9.
 
60.
Brown NJ, Xuan W, Salome CM et al. Reference equations for respiratory system resistance and reactance in adults. Respir Physiol Neurobiol 2010; 172:162–168.
 
61.
Crim C, Celli B, Edwards LD et al. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results. Respiratory Medicine 2011; 105:1069-1078.
 
62.
Kohlhaufl M, Brand P, Scheuch H, Haussinger K, Heyder J. Impulse oscillometry in healthy nonsmokers and asymptomatic smokers: effects of bronchial challenge with metacholine. J Aerosol Med 2001; 14:1-12.
 
63.
Kanda S, Fujimoto K, Komatsu Y, Yasuo M, Hanaoka M, Kubo K. Evaluation of Respiratory Impedance in Asthma and COPD by an Impulse Oscillation System. Inter Med 2010; 49:23-30.
 
64.
Williamson PA, Clearie K, Menzies D, Vaidynathan S, Lipworth BJ. Assessment of small-airways disease using alveolar nitric oxide and impulse oscillometry in asthma and COPD. Lung 2011;189:121-129.
 
65.
Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J 1999; 13:197-205.
 
66.
Butler J, Caro CG, Alcala R, Dubois AB. Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 1960; 39: 584-591.
 
67.
Crapo RO, Morris AH, Clayton PD, Nixon CR. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 1982; 18:419-425.
 
68.
Guo YF, Herrmann F, Michel JP, Janssens PJ. Normal values for respiratory resistance using forced oscillation in subjects older than 65years old. Eur Respir J 2005; 26:602-608.
 
69.
Goldstein D, Mead J. Total respiratory impedance immediately after panting. J Appl Physiol 1980; 48:1024-1048.
 
70.
Cauberghs M, van den Woestijne KP. Changes of respiratory input impedance during breathing in humans. J Appl Physiol 1992; 73:2355-2362.
 
71.
Kubota M, Shirai G, Nakamori T, Kokubo K, Masuda N, Kobayashi H. Low frequency oscillometry parameters are less variable during inspiration than during expiration. Respir Physiol Neurobiol 2009; 166:73-79.
 
72.
Ohishi J, Kurosawa H, Ogawa H, Irokawa T, Hida W, Kohzuki M. Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study. BMJ Open 2011; 2:e000184.
 
eISSN:1791-4914
ISSN:1105-848X