Symptomatic impact and anxiety generated by performing pulmonary function tests: Are there differences between patients with fibrotic interstitial lung disease and obstructive airway disease?

Catarina Cascais Costa¹, Diana Mendes¹, Joana Santos¹, Vera Afreixo², Pedro Gonçalo Ferreira³,⁴

ABSTRACT

INTRODUCTION Pulmonary function tests (PFTs) are a basic tool in the evaluation of respiratory pathology. Understanding how the underlying pathology affects its performance and the levels of dyspnea and anxiety generated in patients remain poorly studied. The aim of this study is to compare PFT performance and dyspnea levels between a group of patients with fibrotic interstitial lung disease (ILD) and a group of patients with obstructive pulmonary disease.

METHODS This was a prospective study conducted between May 2021 and September 2022, with patients who underwent PFT in a level two hospital in Portugal. A questionnaire assessing vital parameters, and dyspnea and anxiety scales was applied. Data obtained before and after performing the tests were compared and analyzed.

RESULTS In all, 80 patients were evaluated, 40 with some form of fibrotic ILD and 40 with obstructive airway disease. A trend towards greater elevation of cardio-respiratory stress, specially through respiratory rate, was found after PFT in the group of patients with ILD. In contrast, a trend towards higher levels of anxiety immediately before PFT was observed in patients with obstructive disease (mostly COPD) compared to that seen in the group of patients with fibrotic ILD. The variables contributing the most to length of stay in the lung function laboratory were: undergoing a bronchodilation test; the number of attempts needed to reach a technically adequate flow-volume curve; the previous degree of dyspnea, heart rate and respiratory rate before the test; and male gender. A diagnosis of fibrotic ILD was also, by itself, a determining factor for a longer stay in the lab.

CONCLUSIONS There are differences in the levels of cardio-respiratory stress, anxiety, and length of stay in the lab to complete PFT between patients with ILD and obstructive airway disease. The awareness for these differences can help to anticipate hazards and allow differentiated approaches to these patients.

INTRODUCTION

Pulmonary function tests (PFTs) comprise a set of assessments for studying lung function. They may be used in individuals presenting with respiratory symptoms (such as dyspnea or cough) or radiological abnormalities in need of clarification, preoperative evaluation setting or suspected occupational respiratory disease, or for monitoring the disease course and treatment response in patients with known respiratory disease¹,².

Correct interpretation of PFT requires that the American Thoracic Society (ATS) and European Respiratory Society (ERS) technical standards be met, which demands not only adequate equipment, but also minimally acceptable patient cooperation for protocol required manoeuvres³. Thus, obtaining acceptable PFT may prove a challenge, especially in children, older patients, or patients in more severe stages of disease³. On the technician’s side, explaining the procedure, providing examples and verbal encouragement are essential². However, the type and stage of the respiratory disease in question may potentially influence the difficulty in conducting these tests, which can also lead to patient anxiety and discomfort.

Exertional dyspnea is a common symptom in chronic obstructive airway disease (COPD) and interstitial lung
disease (ILD). This is a complex symptom, with several associated mechanisms and closely related to exercise tolerance and quality of life. In both nosological groups, depression and anxiety are common\(^1\)\(^–\)\(^8\), and may be related with the level of dyspnea/tolerance for exertion, which, in turn, may condition physical and emotional participation in basic activities of daily living\(^6\).

In this study, the authors aimed to evaluate and compare dyspnea and anxiety before and after PFT, the level of heart and respiratory rate, and the delay in performing these tests in a group of patients with either fibrotic ILD or obstructive airway disease (COPD and bronchial asthma).

METHODS

The authors conducted a prospective analytical cross-sectional study, between May 2021 and September 2022, of sequentially enrolled patients who underwent PFT in a lung function laboratory at a level two hospital (hierarchy according to responsibilities and specialties present in the hospital), who had either fibrotic ILD or some form of obstructive airway disease, and agreed to participate in the study.

After obtaining informed consent, a survey (Supplementary file) was applied on the day of the PFT previously requested by the attending pulmonologist. The survey, specially created for this purpose, also evaluated the number of attempts needed to obtain an acceptable output-volume curve, as well as the heart rate and respiratory rate before and immediately after the end of the tests.

Assessment of dyspnea

To assess dyspnea four questionnaires/scales were used:

- Modified Medical Research Council Dyspnea Scale (mMRC), validated for the Portuguese language, applied before PFT. Originally validated for assessing disability in COPD\(^5\), it is currently one of the most used tools for grading exertional dyspnea in chronic respiratory patients.
- Modified Borg scale, applied before and after the PFT. This scale is widely used to assess perceived exertion\(^10\).
- Visual analogue dyspnea scale, applied before and after PFT.
- University of California, San Diego Shortness of Breath Questionnaire (UCSDSOBQ), consisting of 24 items for classification (0–5) of the degree of dyspnea according to the limitation imposed on the performance of various daily tasks and activities, completed before PFT\(^11\).

Assessment of anxiety

To assess anxiety two scales were used:

- Hospital Anxiety and Depression Scale (HADS), consisting of 7 related specific questions (scored from 0–3)\(^15\), completed immediately before undergoing PFT.
- Generalized Anxiety Disorder Assessment (GAD–7), comprising 7 items (score: 0–3) portraying various daily situations and reaction frequency\(^13\), completed immediately before undergoing PFT.

RESULTS

A total of 80 patients were evaluated, 40 of them with obstructive airway disease and another 40 with some form of fibrotic ILD. In the first group, 45% of the patients had a diagnosis of COPD (with an overall mean FEV\(_1\) value of 70.18 ± 21.9% of the predicted value, with half of the patients in GOLD stages 3 or 4), while the rest had a diagnosis of bronchial asthma (77.3% of them in GINA treatment 1–3 and 22.7% in steps 4–5). Regarding the patients included in the fibrotic ILD group, the distribution of individual diagnoses was as follows: 35.0% with fibrotic hypersensitivity pneumonitis, 27.5% with idiopathic pulmonary fibrosis (IPF), 12.5% with idiopathic or secondary fibrotic non-specific interstitial pneumonia (NSIP), 10.0% with UIP secondary to rheumatoid arthritis, 7.5% of unclassifiable fibrotic interstitial pneumonia, and 5.0% of patients with chronic silicosis complicated by progressive massive fibrosis. In this group, mean FVC and DLCO values were 77.1 ± 22.1% and 53.6 ± 19.8% predicted, respectively.

The following variables were evaluated: age, gender, diagnosis, lung function, number of attempts, number of acceptable curves, heart and respiratory rates before and after PFT, mMRC, UCSDSOBQ, Borg scale (dyspnea), visual dyspnea scale, GAD7, HADS – dimension of ‘anxiety’, time spent (minutes) in the room and number of technically acceptable flow-volume curves between the two groups (Table 1).
The group with fibrotic ILD had a lower median age ($p<0.001$), a lower DLCO ($p<0.05$) and a higher FEV$_1$/FVC value ($p<0.001$). Post PFT heart rate, respiratory rate, and severity of dyspnea by visual analogue scale, also tended to be higher in this group.

Regarding dyspnea, the baseline mMRC level was
significantly higher in the fibrotic ILD patients (p<0.001). The UCSDSOBQ and Borg scale values also tended to be higher in this group of patients compared to patients with obstructive airway disease. No statistically significant differences were found between subgroups: asthma versus COPD and UIP versus non-UIP (Table 2).

In the anxiety assessment, there were no statistically significant differences between groups. However, the analysis by subgroups showed a trend towards a higher level of anxiety in the subgroup of patients diagnosed with COPD, compared to the other groups of patients (Table 2).

Total time in the respiratory function laboratory was significantly impacted by the performance of a bronchodilation test (p<0.001), the number of attempts needed to achieve a technically adequate flow-volume curve (p<0.001), the visual analogue dyspnea scale value before the test (p<0.001), UCSDSOBQ score (p<0.05), heart and respiratory rates before the test (p<0.001), and male gender (p<0.05). A diagnosis of fibrotic ILD was also a determining factor (p<0.05) (Table 3).
DISCUSSION

 Differences were found in some objective measures of cardio-respiratory stress, such as HR and RR, immediately after the end of PFT in the group of patients with fibrotic ILD. Additionally, this group of patients reported a higher level of dyspnea when assessed by the mMRC scale, and tended to have a higher value on both the Borg scale and on the visual analogue dyspnea scale, which aligns with the fact that dyspnea is a common and intrusive symptom in patients with IPF, fibrotic hypersensitivity pneumonitis and ILD secondary to connective tissue disease14-16.

 Regarding anxiety, a prevalence of up to 31\% has been reported in patients with chronic ILD17 and up to 34\% in patients with asthma18. In patients with COPD, there have been reports of prevalence reaching as high as 55\%19. In this study, the COPD subgroup also tended to report higher levels of anxiety.

 In patients with fibrotic ILD or obstructive airway disease, both dyspnea and anxiety may profoundly impact the natural course of disease, not only by reducing quality of life measures but also by increasing social isolation, depression, lack of adherence to therapy and risk of hospitalizations and exacerbations19.

 Patients with fibrotic ILD spent a longer time in the laboratory to complete PFT (p<0.05) and tended to have a lower number of acceptable curves during their performance. Although PFTs are an invaluable tool for longitudinal monetarization of these patients, in advanced stages of disease the progressive limitation of their ability to collaborate with the performance of serial PFT may lead to

<table>
<thead>
<tr>
<th>Variables</th>
<th>Multiple linear regression</th>
<th>Stepwise linear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
<td>95% CI</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive disease</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fibrotic interstitial disease</td>
<td>4.1</td>
<td>-0.65–8.8</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>-2.9</td>
<td>-6.2–0.49</td>
</tr>
<tr>
<td>Age</td>
<td>-0.09</td>
<td>-0.26–0.07</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>-0.14</td>
<td>-0.32–0.04</td>
</tr>
<tr>
<td>FVC</td>
<td>0.00</td>
<td>-0.08–0.08</td>
</tr>
<tr>
<td>KCO</td>
<td>-0.04</td>
<td>-0.13–0.05</td>
</tr>
<tr>
<td>Spirometry</td>
<td>0.71</td>
<td>-2.4–3.8</td>
</tr>
<tr>
<td>BD test prescribed</td>
<td>9.7</td>
<td>6.6–13</td>
</tr>
<tr>
<td>DLCO prescribed</td>
<td>-8.9</td>
<td>-22–4.5</td>
</tr>
<tr>
<td>Number of attempts</td>
<td>2.0</td>
<td>1.1–3.0</td>
</tr>
<tr>
<td>Number of acceptable curves</td>
<td>-3.3</td>
<td>-8.2–1.5</td>
</tr>
<tr>
<td>HR before PFT</td>
<td>-0.10</td>
<td>-0.21–0.00</td>
</tr>
<tr>
<td>RR before PFT</td>
<td>0.45</td>
<td>-0.05–0.95</td>
</tr>
<tr>
<td>RR after PFT</td>
<td>0.05</td>
<td>-0.36–0.46</td>
</tr>
<tr>
<td>mMRC</td>
<td>-0.17</td>
<td>-2.8–2.5</td>
</tr>
<tr>
<td>UCSDSOBQ</td>
<td>-0.14</td>
<td>-0.26–0.02</td>
</tr>
<tr>
<td>Visual Scale before PFT</td>
<td>2.5</td>
<td>1.1–3.8</td>
</tr>
<tr>
<td>Visual Scale after PFT</td>
<td>0.25</td>
<td>-0.60–1.1</td>
</tr>
<tr>
<td>HADS</td>
<td>0.07</td>
<td>-0.67–0.82</td>
</tr>
<tr>
<td>GAD7</td>
<td>-0.01</td>
<td>-0.52–0.50</td>
</tr>
</tbody>
</table>
greater levels of frustration and anxiety while also impairing the tests’ reliability and reproducibility. A better awareness by the clinical staff of specific difficulties in performing PFT imposed by certain diseases and the possibility of improving strategies and providing adequate pulmonary laboratory time, may help to reduce anxiety and discomfort in these patients.

CONCLUSIONS
Obstructive airway diseases and ILD are eminently different in their pathophysiology, clinical repertoire, and natural history. We sought to assess differences imposed by the type of disease on the difficulty in performing PFT and the level of dyspnea and anxiety hence generated.

Despite limitations related to sample size, there was a greater cardio–respiratory stress in patients with fibrotic ILD when compared with patients with obstructive airway disease, objectively assessed by HR and RR immediately after finishing PFT. Similarly, some indicators suggest a higher level of dyspnea after PFT in the former group. A longer time needed to perform PFT as well as a lower number of acceptable curves were also observed in the ILD subgroup. As for anxiety, the subgroup of patients with COPD tended to present with higher levels. The awareness for these differences can help to anticipate hazards and allow differentiated approaches to these patients.

CONFLICTS OF INTEREST
The authors have completed and submitted to ICMJE for Disclosure of Potential Conflicts of Interest and none was reported. C. Cascais Costa reports support for attending Sanofi – Congresso Portugues de Pneumologia 2022, and Linde - Congresso de Pneumologia do Norte 2023. P. G. Ferreira reports receiving consulting fees and honoraria for lectures from Boehringer Ingelheim and also support for attending meetings and/or travel for Boehringer Ingelheim.

FUNDING
This research was partially funded by Portuguese funds through CIDMA, The Center for Research and Development in Mathematics and Applications of University of Aveiro, and the Portuguese Foundation for Science and Technology (FCT–Fundação para a Ciência e a Tecnologia), within projects UIDB/04106/2020 and UIDP/04106/2020.

ETHICAL APPROVAL AND INFORMED CONSENT
Ethical approval was obtained from the hospital’s ethics committee (Approval number: 44-05-2022; Date: 15 December 2022). Participants provided informed consent.

DATA AVAILABILITY
The data supporting this research are available from the authors upon reasonable request.

PROVENANCE AND PEER REVIEW
Not commissioned; externally peer-reviewed.

REFERENCES

